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Abstract-The torsional problem of a penny-shaped crack at the interface between two distinctly
different materials is investigated by presenting the generalized interlayer model. Dislocation density
function and integral transform are used to reduce the problem to the singular integral equation.
Numerical examples are given to show the effects of the interlayer thickness, distribution parameter,
and local nonhomogeneous material property on the stress intensity factor which is obtained by
solving a singular integral equation. © 1997 Elsevier Science Ltd.

I. INTRODUCTION

Due to the interpenetration (Williams, 1959) between the interface crack surfaces, modes I
and II are coupled and no proper definition for the stress intensity factor is given. To
overcome this pathological phenomenon, small scale contact zones (see, e.g., Rice, 1988,
Comninou, 1977, Achenbach et al. 1979), elastic-plastic analysis (see, e.g., Shih and Asaro
1988, Wang, 1990) and interlayer models (see, e.g., Atkinson, 1977, Ozturk and Erdogan,
1993, 1995, Delale and Erdogan, 1988) are presented. Erdogan has introduced an interlayer
model that depends completely on interlayer thickness and material properties. Erdogan's
modulus distribution is given as J1iz) = J11 exp(z/hlnJ13/J1I)' however, we present a more
general interlayer model: J12(Z) = (a+bz)k with distribution parameter k independent of
interlayer thickness h and material properties. As the limiting case, Erdogan's modulus
distribution can be obtained as k --+ 00 with a = .y;;, b = (.y;;- .y;;)/h. The continuity
of the elastic modulus leads to the usual square root singularity and avoids the oscillatory
behavior. As an example, by virtue of this generalized interlayer model, we treat an interface
penny-shaped crack under torsion, and the treatment is based on the use of dislocation
density function and integral transform. Numerical results, which are obtained by solving
a singular integral equation, indicate the effects of interlayer thickness, local non
homogeneous elastic property, adjacent material combination and especially the dis
tribution parameter k on the stress intensity factor.

2. BASIC EQUATIONS AND SINGULAR INTEGRAL EQUATION

Consider the penny-shaped crack problem shown in Fig. I. It is assumed that the
applied loads acting in the circumferential direction are axisymmetric. The material-I and
material-3 may be assumed to be unbounded. Thus, the displacement Uo = v and the
stress components (JOr and (Joz are the only nonvanishing quantities. The basic equilibrium
equations are as follows:
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Fig. 1. Interface penny-shaped crack, Jl2(Z) = (a +bz)\ and JlI = cons\., Jll = cons\., Jl2(O) = Jlb
Jl2(h) = JlJ.

O<TOr O<T~z 2.- + - + -<TOr = 0 i = 1,2,3.or OZ r

Substituting constitutive relations

(1)

j oVi j (OV i Vi)
<TOz = !J.i OZ' <TOr =!J.i or - -;:

into (1), we obtain

i = 1,2,3 (2)

where i = 1,2,3 refer to the materials in Fig. 1.
The boundary conditions are as follows:

Introducing the Hankel transform of the first order, Vi can be expressed as

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)
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v;(r, z) = 100
V;(z, p)J1 (pr)p dp i = 1,2,3,

where J10 is the Bessel function of the first kind.
From eqns (12), (3), (4), we obtain that

Considering the regularity condition at Izi -+ 00, solutions can be expressed as

and
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(12)

(13)

(14)

(15)

(16)

(17)

, _p (a+bz) , _p (a+bZ)V2 (z,p) = A 2 (a+bz) lp -I-bl-P +A 3 (a+bz) Kp -I-bl- P hI < Z < h, (18)

where f3 = (k-I)J2, IpO, KpO are modified Bessel functions of the first kind and the second
kind.

Defining the dislocation density function as

(19)

Substituting eqns (15)-(18) into constitutive relations, and then by using boundary
conditions (5), (6), (8), (10), (11) and dislocation density function g(r), after complicated
treatment, we obtain

where

[+00
K(s, r) = Jo D(p)pJI (pr)Jo(ps) dp.

D(p) is given in the Appendix. K(s, r) can be further expressed as

K(s, r) = Kn(s, r) + Ks(s, r),

(20)

(21)

(22)

(23)
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1+00 r:t.[ I -s-r+2rM(s, r)]
Ks(s, r) = rx. pI j (pr)Io(ps) dp = - - -(--) + , (24)

o n s s-r S(S2 _r2 )

I
r:t. = lim D(p) = - -, (25)

p~+oo 2

s < r,

(26)

s> r.

E and K are complete elliptic integrals of the second and first kind, respectively. Thus, by
using eqn (9), eqn (20) is converted to

1
C [-rx I r:t. s+r-2rM(s, r)}

Po = /12(h j ) -- +sKn(s,r) + - (s)ds 0 < r < c,
o n s - r n S2 _ r2

(27)

so we obtain a singular integral equation with the generalized Cauchy kernel. We introduce

H(s)
g(s) = 0 < S < c,

i(c-s).l
(28)

using methods developed by Erdogan (1975), we obtain the characteristic equations as

ctg(nA) = 0, cos(nb) = I. (29)

Here the problem under consideration is of axisymmetric torsion, so there exists v2(O, z) = O.
The admissible root of (29) is

The single-valued condition can be obtained from the definition of g(s)

f sg(s) ds = O.

3. THE SOLUTION

Equations (27) and (31) can be solved after normalizing the interval by defining

(30)

(31)

I +t
s = -2-c,

Equations (27) and (31) are converted to

I+x
r = -2-c. (32)
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fl [-IX 1 C J Po--+ ~2Q(t,x) G(t)dt = ~(h)'
~ I n t-x (12 I

Ll (1 +t)G(t)dt = 0,

where

[

tt S+r-2rM(S,r)]
Q(t,X)= sKn(s,r)+- 2 2 '

n s -r .y=(l +O/2c,t"=(1 +",)/2 (

(
1+ t )G(t) = 9 ~2~C .

We use a numerical method developed by Erdogan (1975). G(t) is expressed as

F(t) 1
G(t) = 11- 11-: .

v 1+t...;1-t

Expanding F(t) in forms of Chebyshev polynomials gives

cx:c

F(t) = L BnTn(t).
n=O

U sing the properties of Chebyshev polynomials as follows:
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(33)

(34)

(35)

(36)

(37)

(38)

1 fl Tn(t) dt

; -1 (t-x)Jl-t2 =

we obtain

° n=O
Un _ Jx) n = 1,2, ...

_ Ixl [x_lxljx2-1Jn
~ n=O,I, ...

Xv x 2 -1 x

-l<x<l,

-l<x<l,

Ixl > 1, (39)

where

(
21- I )t,=cos ~7! , 1= 1, ... n. (41)

Equation (34) can be converted to

1fl (1 + t)F(t) dt ~ 1+ t, . 0
~ ':::;; L. --F(t,) = .
n -1 jl-t2 '=1 n

Thus, eqns (33) and (34) become

(42)

(43)
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I
n [-(1. nc JF(t/) PoL -t-+-2Q(t/,xm ) -=-(h)'

/=1 /-Xm n f..I.2 I

n 1+ t/
I-F(ta = O.

/=1 n

(44)

F(t/) can be obtained by solving this system of linear algebraic equations.
In deriving the singular integral equation, we find that the right-hand side of eqn (27)

represents O'~z(r, hI) within (0, c) as well as outside (0, c), that is to say

2 1C

[-(1. 1 (1.s+r-2rM(S,r)}
O'ez(r, hd = f..I.2 (h j ) - - + sKn(s, r) + , (s) ds

o n s - r n s- - r2

Substituting eqn (45) into the definition of stress intensity factor

K 3 = li~ J2(r-c)0'~z(r,hl)
r~c

and using eqns (36)-(39), we obtain

From eqn (38) it can be obtained that

00 00

I BnTn(1) = IBn = F(1),
n=O n=O

so we obtain

where F(1) can be obtained by interpolation.
The strain energy release rate

Using the asymptotic relations

r> c. (45)

(46)

(47)

(48)

(49)

(50)

(51)

(52)

The above two relations can be asymptotically obtained from eqns (46), (19), (36), (37)
and (49), and we can obtain that

(53)
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Fig. 2. Effect of the position of the crack on the stress intensity factor for various interlayer
thicknesses.

4. RESULTS AND DISCUSSION

The stress intensity factor and strain energy release rate in numerical example are
normalized as

(54)

In numerical procedure, for the fixed interlayer thickness h/e and fixed material combination
/11//13' the number of discrete points n is effected by the crack position hl/h, as the crack
approaches the stiffer medium, the number of n will increase to keep the desired accuracy.
However, in our numerical example, n = 39 can make sure that the results are accurate
within 0.00001 at least.

In Fig. 2, different than the earlier conclusion for a piecewise homogeneous layered
medium, which indicates that if the crack approaches a stiffer medium, the stress inten~ity

factor decreases, the results from our nonhomogeneous interlayer model show that the
stress intensity factor increases with an increase in the value of hl/h as /1\ < /13(/11/J13 = 1/3).
The results in Fig. 2 indicate that, as the value of hl/h increases, the increase in the
stress intensity factor results from the increase in the local elastic modulus, and the local
nonhomogeneous elastic modulus /12(Z) determines the stress intensity factor rather than
the elastic properties of the adjacent materials.

In Fig. 3, the results indicate that, with J1d /13 = 1/3, for various interlayer thicknesses,
the increase in the local nonhomogeneous elastic modulus results in the decrease in the
strain energy release rate, and as the interlayer thickness h/e -> 0, the strain energy release
rate approaches the constant that represents the strain energy release rate as h = O. It can
be seen that the strain energy release rate keeps continuity as interlayer thickness approaches
zero.

In Fig. 4, with hl/h = 0.5, /1dJ13 = 1/3, the results indicate thatthe stress intensity factor
decreases with an increase in the interlayer thickness h/e for various distribution parameters,
and on the other hand, it can be seen that, for any fixed interlayer thickness, the stress
intensity factor decreases with the increase in the distribution parameter as the crack
position is situated at the center of the interlayer.

In Figs 5 and 6, we give the case where h/e = 0.1, /1dJ13 = 1/3. First, we find the
dependence of the stress intensity factor and strain energy release rate on the value of h1/h
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Fig. 3. Effect of the position of the crack on the strain energy release rate for various interlayer
thicknesses.
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Fig. 4. Effect of the interlayer thickness on the stress intensity factor for various distribution
parameters.

as in Fig. 2 and Fig. 3. Secondly, the results indicate that the distribution parameter k
inserts remarkable effect on the stress intensity factor, in Fig. 5, with any fixed hdh in the
domain of about 0-0.037 or 0.9~1, the effect of the distribution parameter on the stress
intensity factor is contrary to that with any fixed value of hdh in the domain of about
0.037-0.9, and the results in Fig. 6 show that the strain energy release rate increases with
an increase in the distribution parameter for any fixed crack position.
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Fig. 5. Effect of the distribution parameter on the stress intensity factor for various crack positions.
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Fig. 6. Effect of the distribution parameter on the strain energy release rate for various crack
positions.

In Fig. 7, with k = 2, h/e = 0.1, the results indicate that, as hdh ~ 0.6, the stress
intensity factor steeply decreases with the increase in the value of 111/113, and for hdh = 0.2
or hdh = 0.4, as the value of 111/113 increases, after a dramatic decrease, the stress intensity
factor slowly increases, as for the case where hdh = 0, the stress intensity factor gradually
increases with the increase in the value of Ild1l3. Noticing that the difference in the value pf
111/113 reflects the difference in local nonhomogeneous elastic modulus 1l2(Z) = (a +bZ)k with
a = kj";;, b = (kj;; _kj";;)/h, we again see the effect of local nonhomogeneous elastic
modulus on the stress intensity factor for any fixed crack position.
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Fig. 7. Effect of the material combination on the stress intensity factor for various crack positions.
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APPENDIX

D(p) = [L 61 (L 22 - pL ,2 )+L 62 (pL 11 - L 21 )][L61 (pL 32 +L.,) -L62 (pL J1 +L41 )]

(LSI L 62 -L61 L S2 )[(pL 11 -L21 )(pL J2 +L 42 ) - (pL J1 +L41 )(pL 12 -L22 )]

L 11 = a-PIpC~1 p) L 12 = a- PKp(I~1 p)

L 21 = -ba-P-I Plp(I~1 p)+a-P I~I pnC~1 p)

L 22 = -ba-hPKpC~1 p)+a-P I~I PKp(~P)

_p (a+bh ) _p (a+bh)L JI = (a+bh) I p -I-bl- P LJ2 =(a+bh) Kp~p
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